Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery

Author:

Jełowicki Łukasz,Sosnowicz Konrad,Ostrowski WojciechORCID,Osińska-Skotak KatarzynaORCID,Bakuła KrzysztofORCID

Abstract

This research is related to the exploitation of multispectral imagery from an unmanned aerial vehicle (UAV) in the assessment of damage to rapeseed after winter. Such damage is one of a few cases for which reimbursement may be claimed in agricultural insurance. Since direct measurements are difficult in such a case, mainly because of large, unreachable areas, it is therefore important to be able to use remote sensing in the assessment of the plant surface affected by frost damage. In this experiment, UAV images were taken using a Sequoia multispectral camera that collected data in four spectral bands: green, red, red-edge, and near-infrared. Data were acquired from three altitudes above the ground, which resulted in different ground sampling distances. Within several tests, various vegetation indices, calculated based on four spectral bands, were used in the experiment (normalized difference vegetation index (NDVI), normalized difference vegetation index—red edge (NDVI_RE), optimized soil adjusted vegetation index (OSAVI), optimized soil adjusted vegetation index—red edge (OSAVI_RE), soil adjusted vegetation index (SAVI), soil adjusted vegetation index—red edge (SAVI_RE)). As a result, selected vegetation indices were provided to classify the areas which qualified for reimbursement due to frost damage. The negative influence of visible technical roads was proved and eliminated using OBIA (object-based image analysis) to select and remove roads from classified images selected for classification. Detection of damaged areas was performed using three different approaches, one object-based and two pixel-based. Different ground sampling distances and different vegetation indices were tested within the experiment, which demonstrated the possibility of using the modern low-altitude photogrammetry of a UAV platform with a multispectral sensor in applications related to agriculture. Within the tests performed, it was shown that detection using UAV-based multispectral data can be a successful alternative for direct measurements in a field to estimate the area of winterkill damage. The best results were achieved in the study of damage detection using OSAVI and NDVI and images with ground sampling distance (GSD) = 10 cm, with an overall classification accuracy of 95% and a F1-score value of 0.87. Other results of approaches with different flight settings and vegetation indices were also promising.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. EUROSTAT DATAhttps://ec.europa.eu/eurostat/databrowser/view/tag00100/default/table?lang=en

2. Wymarzanie Rzepaku Ozimego, Farmer.plhttps://www.farmer.pl/produkcja-roslinna/rosliny-oleiste/wymarzanie-rzepaku-ozimego,76896.html

3. Application of remote sensing methods in agriculture;Wójtowicz;Commun. Biometry Crop Sci.,2016

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3