Abstract
Using numerical model outputs as a bridge, an indirect validation method for remote sensing data was developed to increase the number of effective collocations between remote sensing data to be validated and reference data. The underlying idea for this method is that the local spatial-temporal variability of specific parameters provided by numerical models can compensate for the representativeness error induced by differences of spatial-temporal locations of the collocated data pair. Using this method, the spatial-temporal window for collocation can be enlarged for a given error tolerance. To test the effectiveness of this indirect validation approach, significant wave height (SWH) data from Envisat were indirectly compared against buoy and Jason-2 SWHs, using the SWH gradient information from a numerical wave hindcast as a bridge. The results indicated that this simple indirect validation method is superior to “direct” validation.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献