Study on Shear Mechanical Properties and Fracture Evolution Mechanism of Irregular Serrated Rock Discontinuities

Author:

Li Xinpeng1ORCID,Wang Dong12ORCID,Jiang Yujing123ORCID,Luan Hengjie124,Zhang Sunhao3,Wang Changsheng2ORCID,Liu Jiankang12ORCID

Affiliation:

1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

3. School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

4. Inner Mongolia Shanghaimiao Mining Co., Ltd., Ordos 016299, China

Abstract

To analyze the shear characteristics and mesoscopic failure mechanism of irregular serrated rock discontinuities, a great deal of interview samples of irregular serrated structures were made by 3D printing technology, and laboratory shear tests were carried out on them under different normal stresses. At the same time, PFC numerical simulation software is used to establish relevant models to study the evolution of microcracks and the distribution characteristics of the force chain on the rock discontinuity during the shear process. The results show that the shear mechanical properties of irregular serrated rock discontinuities are affected by normal stress, undulating angle, and undulating height. The shear strength increases with the increase of normal stress and undulating height, and decreases with the increase of undulating angle. The numerical simulation results show that the irregular structural surface cracks under different undulation angles, which first start at the near force end serration root on both sides and further evolve to the adjacent serrations, while the irregular structural surface cracks under different undulation heights, which first start at the serration root with the lowest height and expand to the adjacent serrations. At the same time, the number of cracks increases with the increase of normal stress and the force chain is mainly distributed near the sawtooth surface. The force chain is more concentrated near the near force end sawtooth and at the tip and root of the rest of the sawtooth. At the same time, the direction of the force chain is approximately perpendicular to the force surface of the sawtooth. The research results are helpful in further understanding the shear mechanical properties and differences of irregular serrated rock discontinuities.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation of China

state key laboratory for geomechanics and deep underground engineering in CUMTB

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3