Numerical Investigation on Anisotropy and Shape Effect of Mechanical Properties of Columnar Jointed Basalts Containing Transverse Joints

Author:

Wang Yongyi,Gong BinORCID,Tang Chun’an

Abstract

AbstractWe studied the non-linear mechanical response and failure mechanism of columnar jointed basalts (CJBs) with transverse joints by modeling meso-mechanics, statistical damage theory and continuum mechanics. The anisotropy and shape effect of CJBs with transverse joints were captured under different lateral pressures. The digital images were transformed into heterogeneous element meshes, and the gradual fracturing process and various failure modes of CJBs were reproduced. The compressive strength (CS) and equivalent deformation modulus (EDM) of CJBs parallel and perpendicular to the column axis were studied. The results show that the U-shaped CS curve of CJB appears as the column dip angle increases, and the CS is obviously improved as the lateral pressure increases when the column dip angle is 0°–90°. When the shape of CJB changes from 6 m × 3 m, 3 m × 3 m to 1.5 m × 3 m, the CS continues to increase. Meanwhile, the transverse joints are proven to be critical for determining the mechanical properties of CJBs at the certain dip angles of columns. However, the high lateral pressure can reduce the CS difference between the CJBs with and without the transverse joints. Besides, as the elastic modulus of joints rises, the CS will grow up, and the EDM will increase first and then almost remain at the same level. The coefficient of rock residual strength has a great influence on the CS at the certain dip angles of columns. Additionally, the model boundary significantly affects the anisotropy and shape effect of mechanical properties of CJBs under compression. These conclusions will improve our knowledge of the failure mechanisms and failure patterns of CJBs containing transverse joints.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3