Investigation of the anisotropic mechanical response of layered shales

Author:

Gao Min12,Gong Bin3ORCID,Liang Zhengzhao4,Jia Shanpo2ORCID,Zou Jiuqun1

Affiliation:

1. Engineering Research Center of Underground Mine Construction (Chinese Ministry of Education) Anhui University of Science and Technology Huainan China

2. School of Earth Science Northeast Petroleum University Daqing China

3. Department of Civil and Environmental Engineering Brunel University London London UK

4. State Key Laboratory of Coastal and Offshore Engineering Dalian University of Technology Dalian China

Abstract

AbstractLayered shales exist widely and are often encountered during shale gas development. However, the mechanical response of layered shales is significantly affected by the existence of beddings, resulting in the obvious anisotropy characteristics regarding deformation, strength and failure mode. To clarify the underlying mechanisms of shale anisotropy that control the safety of engineering projects, the numerical simulation and theoretical analysis were conducted. The results show that with the growth of confining pressure, the compressive resistance of shales gradually increases, the shear fractures govern the instability and the anisotropy index decreases. Furthermore, several strength criteria for layered rock masses were summarized, and the modified Jaeger strength criterion was proposed by introducing the anisotropic parameter . It can effectively reflect the failure modes and strength features of layered shales under triaxial conditions with a higher accuracy. Besides, the variation of cohesion and internal friction angle of layered shale samples was comprehensively analysed under the triaxial conditions. Clearly, as the inclination angle of bedding planes increases, the cohesion of layered shales first decreases, but then increases under triaxial compression, showing the ‘U’‐shaped changing trend. Additionally, the internal friction angle of layered shales gradually increases with the increase in the inclination of bedding planes.

Funder

Natural Science Foundation of Anhui Province

Anhui University

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3