Experimental Investigation of High-Viscosity Conductive Pastes and the Optimization of 3D Printing Parameters

Author:

Zhang Jinyu1,Wu Shixiong1,Wang Zedong1,Chen Yuanfen1ORCID,You Hui1ORCID

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning 530004, China

Abstract

Traditional contact printing technology is primarily controlled by the shape of the mask to form the size, while for the more popular non-contact printing technologies, in recent years, adjusting the print parameters has become a direct way to control the result of the printing. High-viscosity conductive pastes are generally processed by screen printing, but this method has limited accuracy and wastes material. Direct-write printing is a more material-efficient method, but the printing of high-viscosity pastes has extrusion difficulties, which affects the printed line width. In this paper, we addressed these problems by studying the method of printing high-viscosity conductive paste with a self-made glass nozzle. Then, by parameter optimization, we achieved the minimum line width printing. The results showed that the substrate moving speed, the print height, and the feed pressure were the key factors affecting the line width and stability. The combination of the printing parameters of 0.6 MPa feed pressure, 200 mm/s substrate moving speed, and 150 μm print height can achieve a line width of approximately 30 μm. In addition, a mathematical model of the line width and parameters was established, and the prediction accuracy was within 5%. The results and the prediction model of the parameters provide an important reference for the printing of high-viscosity pastes, which have immense potential applications in electronics manufacturing and bioprinting.

Funder

Guangxi Bagui Scholars Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3