A Machine Vision-Based Algorithm for Color Classification of Recycled Wool Fabrics

Author:

Furferi Rocco1ORCID,Servi Michaela1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Florence, 50134 Florence, Italy

Abstract

The development of eco-sustainable systems for the textile industry is a trump card for attracting expanding markets aware of the ecological challenges that society expects in the future. For companies willing to use regenerated wool as a raw material for creating plain, colored yarns and/or fabrics, building up a number of procedures and tools for classifying the conferred recycled materials based on their color is crucial. Despite the incredible boost in automated or semi-automated methods for color classification, this task is still carried out manually by expert operators, mainly due to the lack of systems taking into account human-related classification. Accordingly, the main aim of the present work was to devise a simple, yet effective, machine vision-based system combined with a probabilistic neural network for carrying out reliable color classification of plain, colored, regenerated wool fabrics. The devised classification system relies on the definition of a set of color classes against which to classify the recycled wool fabrics and an appositely devised acquisition system. Image-processing algorithms were used to extract helpful information about the image color after a set of images has been acquired. These data were then used to train the neural network-based algorithms, which categorized the fabric samples based on their color. When tested against a dataset of fabrics, the created system enabled automatic classification with a reliability index of approximately 83%, thus demonstrating its effectiveness in comparison to other color classification approaches devised for textile and industrial fields.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3