Optimizing the Parameters of Long Short-Term Memory Networks Using the Bees Algorithm

Author:

Alamri Nawaf Mohammad H.1ORCID,Packianather Michael1,Bigot Samuel1ORCID

Affiliation:

1. School of Engineering, Cardiff University, Queen’s Buildings, 14-17 The Parade, Cardiff CF24 3AA, UK

Abstract

Improving the performance of Deep Learning (DL) algorithms is a challenging problem. However, DL is applied to different types of Deep Neural Networks, and Long Short-Term Memory (LSTM) is one of them that deals with time series or sequential data. This paper attempts to overcome this problem by optimizing LSTM parameters using the Bees Algorithm (BA), which is a nature-inspired algorithm that mimics the foraging behavior of honey bees. In particular, it was used to optimize the adjustment factors of the learning rate in the forget, input, and output gates, in addition to cell candidate, in both forward and backward sides. Furthermore, the BA was used to optimize the learning rate factor in the fully connected layer. In this study, artificial porosity images were used for testing the algorithms; since the input data were images, a Convolutional Neural Network (CNN) was added in order to extract the features in the images to feed into the LSTM for predicting the percentage of porosity in the sequential layers of artificial porosity images that mimic real CT scan images of products manufactured by the Selective Laser Melting (SLM) process. Applying a Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) yielded a porosity prediction accuracy of 93.17%. Although using Bayesian Optimization (BO) to optimize the LSTM parameters mentioned previously did not improve the performance of the LSTM, as the prediction accuracy was 93%, adding the BA to optimize the same LSTM parameters did improve its performance in predicting the porosity, with an accuracy of 95.17% where a hybrid Bees Algorithm Convolutional Neural Network Long Short-Term Memory (BA-CNN-LSTM) was used. Furthermore, the hybrid BA-CNN-LSTM algorithm was capable of dealing with classification problems as well. This was shown by applying it to Electrocardiogram (ECG) benchmark images, which improved the test set classification accuracy, which was 92.50% for the CNN-LSTM algorithm and 95% for both the BO-CNN-LSTM and BA-CNN-LSTM algorithms. In addition, the turbofan engine degradation simulation numerical dataset was used to predict the Remaining Useful Life (RUL) of the engines using the LSTM network. A CNN was not needed in this case, as there was no feature extraction for the images. However, adding the BA to optimize the LSTM parameters improved the prediction accuracy in the testing set for the LSTM and BO-LSTM, which increased from 74% to 77% for the hybrid BA-LSTM algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Applications of artificial intelligence in intelligent manufacturing: A review;Li;Front. Inf. Technol. Electron. Eng.,2017

2. El-Shahat, A. (2017). Advanced Applications for Artificial Neural Networks, IntechOpen.

3. Machine learning in manufacturing: Advantages, challenges, and applications;Wuest;Prod. Manuf. Res.,2016

4. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives;Singh;Trends Plant Sci.,2018

5. Deep learning for smart manufacturing: Methods and applications;Wang;J. Manuf. Syst.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3