Location Prediction of Sperm Cells Using Long Short‐Term Memory Networks

Author:

Noy Lioz1ORCID,Barnea Itay1,Dudaie Matan1,Kamber Dotan1,Levi Mattan12,Shaked Natan T.1ORCID

Affiliation:

1. Department of Biomedical Engineering Faculty of Engineering Tel Aviv University Tel Aviv 69978 Israel

2. IVF Laboratory Meir Hospital Kfar Saba 4428164 Israel

Abstract

Intracytoplasmic sperm injection (ICSI) requires precise selection of a single sperm cell in a dish to be injected into an oocyte. This task is challenging due to high sperm velocity, collision with other sperm cells, and changes in the imaging focus. Herein, a new model is proposed, which is based on a multilayer long short‐term memory (LSTM) network combined with linear extrapolation calculation, for predicting the future location of individual sperm cells based on their previous paths. The model is trained with a unique loss function, constructed from the predicted location and trajectory, and results in low mean location error predictions. The results are based on comparing different input sequences length, number of time frames ahead, and motility parameters of sperm cells. This model can provide faster and more accurate sperm motility predictions, better tracking, and aid automatic sperm capturing technologies.

Funder

Ministry of Science, Technology and Space

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3