Thermomechanical Stresses in Silicon Chips for Optoelectronic Devices

Author:

Mezzalira Claudia1,Conti Fosca1ORCID,Pedron Danilo12,Signorini Raffaella12ORCID

Affiliation:

1. Department of Chemical Science, University of Padua, Via Marzolo 1, I-35131 Padova, Italy

2. Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy

Abstract

The growing interest in improving optoelectronic devices requires continuous research of the materials and processes involved in manufacturing. From a chemical point of view, the study of this sector is crucial to optimize existing manufacturing processes or create new ones. This work focusses on the experimental evaluation of residual stresses on samples that are intended to simulate part of the structure of an optoelectronic device. It represents an important starting point for the development of optoelectronic devices with characteristics suitable for future industrial production. Silicon chips, with a thickness of 120 μm, were soldered onto copper and alumina substrates, using different assembly parameters in terms of temperature and pressure. Using Raman spectroscopy, the stress evaluation was estimated in a wide temperature range, from −50 to 180 °C. Silicon chips soldered with AuSn alloy on copper substrates demonstrated at 22 °C a compressive stress, developed in the center of the assembly with a maximum value of −600 MPa, which reached −1 GPa at low temperatures. They present a stress distribution with a symmetric profile with respect to the central area of the chip. The silicon chip assembled on a ceramic substrate without pressure turned out to be extremely interesting. Even in the absence of pressure, the sample did not show a large shift in the Raman position, indicating a low stress.

Funder

Department of Chemical Sciences of the University of Padova

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3