SFCWGAN-BiTCN with Sequential Features for Malware Detection

Author:

Xuan Bona1,Li Jin1,Song Yafei1ORCID

Affiliation:

1. College of Air and Missile Defense, Air Force Engineering University, Xi’an 710051, China

Abstract

In the field of adversarial attacks, the generative adversarial network (GAN) has shown better performance. There have been few studies applying it to malware sample supplementation, due to the complexity of handling discrete data. More importantly, unbalanced malware family samples interfere with the analytical power of malware detection models and mislead malware classification. To address the problem of the impact of malware family imbalance on accuracy, a selection feature conditional Wasserstein generative adversarial network (SFCWGAN) and bidirectional temporal convolutional network (BiTCN) are proposed. First, we extract the features of malware Opcode and API sequences and use Word2Vec to represent features, emphasizing the semantic logic between API tuning and Opcode calling sequences. Second, the Spearman correlation coefficient and the whale optimization algorithm extreme gradient boosting (WOA-XGBoost) algorithm are combined to select features, filter out invalid features, and simplify structure. Finally, we propose a GAN-based sequence feature generation algorithm. Samples were generated using the conditional Wasserstein generative adversarial network (CWGAN) on the imbalanced malware family dataset, added to the trainset to supplement the samples, and trained on BiTCN. In comparison, in tests on the Kaggle and DataCon datasets, the model achieved detection accuracies of 99.56% and 96.93%, respectively, which were 0.18% and 2.98% higher than the models of other methods.

Funder

the National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Synthetic Data to Improve Intrusion Detection in Smart City Network Systems;Lecture Notes in Computer Science;2024

2. Status and Outlook of Image-based Malware Detection Technology;2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3