Adversarial EXEmples

Author:

Demetrio Luca1,Coull Scott E.2,Biggio Battista3,Lagorio Giovanni4,Armando Alessandro4,Roli Fabio5

Affiliation:

1. Università degli studi di Cagliari, ITA, Cagliari, Italy

2. FireEye, Inc., Milpitas, CA

3. Università degli studi di Cagliari, ITA and Pluribus One, ITA, Cagliari, Italy

4. Università degli Studi di Genova, ITA

5. Università degli Studi di Cagliari, ITA and Pluribus One, ITA, Cagliari, Italy

Abstract

Recent work has shown that adversarial Windows malware samples—referred to as adversarial EXE mples in this article—can bypass machine learning-based detection relying on static code analysis by perturbing relatively few input bytes. To preserve malicious functionality, previous attacks either add bytes to existing non-functional areas of the file, potentially limiting their effectiveness, or require running computationally demanding validation steps to discard malware variants that do not correctly execute in sandbox environments. In this work, we overcome these limitations by developing a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks based on practical, functionality-preserving manipulations to the Windows Portable Executable file format. These attacks, named Full DOS , Extend , and Shift , inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section. Our experimental results show that these attacks outperform existing ones in both white-box and black-box scenarios, achieving a better tradeoff in terms of evasion rate and size of the injected payload, while also enabling evasion of models that have been shown to be robust to previous attacks. To facilitate reproducibility of our findings, we open source our framework and all the corresponding attack implementations as part of the secml-malware Python library. We conclude this work by discussing the limitations of current machine learning-based malware detectors, along with potential mitigation strategies based on embedding domain knowledge coming from subject-matter experts directly into the learning process.

Funder

ALHOA

RexLearn

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3