Experimental Analysis of the Influence of Gear Design and Catch Weight on the Fluid–Structure Interaction of a Flexible Codend Structure Used in Trawl Fisheries

Author:

Nyatchouba Nsangue Bruno Thierry12345,Tang Hao12345ORCID,Zhang Jian12345ORCID,Liu Wei1,Xu Liuxiong12345,Hu Fuxiang6

Affiliation:

1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

2. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China

3. Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China

4. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China

5. Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China

6. Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan

Abstract

This study evaluated the behavior of different codend designs to provide the basic information that is relevant for improving the gear selectivity, energy efficiency, to better understand the fish behavior inside the codend, and prevent the probability of the fish escaping. Three different codends were designed from the standard codend commonly used in the Antarctic krill fisheries based on modified Tauti’s law and evaluated. The first and the third codends were designed with four-panel and two-panel nettings, respectively, both made of diamond meshes. While, the second one was a four-panel diamond mesh design with cutting ratio 4:1(N [NBNBN]16). We measured the drag force, codend shape, fluttering codend motions, and the flow field inside and behind the different codends composed of different catch weights under various flow velocities in flume tank. The power spectra density was undertaken to analyze the time evolution of measured parameters. The results showed that the drag force and the codend motion increased and decreased, respectively, with the number of net panels and the cutting ratio. Due to the catch weight and flow velocity, which caused significant codend motions and deformation, a complex interaction occurred between the fluid and the structure, and there was a strong correlation between the codend drag, the codend motions, and the turbulent flow inside and behind the codend. The study showed that the use of the four-panel codend with cutting ratio and the two-panel codend resulted in drag reductions of 6.07% and 6.41%, respectively, compared to the standard codend. The velocity reduction and turbulent kinetic energy were lower inside and behind the four-panel codend than inside and behind the two-panel codend, indicating that turbulent flow through the two-panel codend is more important than through the four-panel codend. The results of the power spectral density analysis showed that the drag and codend motions were mainly low frequency in all codends, with another component related to turbulent flow street. In addition, the two-panel codend showed more unstable behavior with more pendulum motion compared to the four-panel codends, resulting in a smaller mesh size in this codend that could affect swimming energy and thus influence fish escape, making it the least selective codend. The results of this study provide fundamental insights useful for understanding and improving the hydrodynamic performance and selectivity of trawls in the Antarctic krill fishery, especially to reveal the masking effects of the number of net panels on codend design.

Funder

National Natural Science Foundation of China

Special project for the exploitation and utilization of Antarctic biological resources of Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3