Study on Reducing Towing Drag by Varying the Shape and Arrangement of Floats and Gears

Author:

Jung Jung-Mo,Matsushita Yoshiki,Kim Seonghun

Abstract

Many studies have been conducted with the aim of reducing fuel consumption by the fishing industry. We examined whether drag can be reduced by changing the arrangement of gears without requiring the development of new parts for the conventional float and ground gear. Ten differently shaped floats and ground gears were measured in a water flume tank. The float and ground gear were fixed to a steel rod to measure fluid drag according to attack angle, using a multi-component load cell. To estimate the frictional drag of ground gear on the seabed, five types of large ground gear were towed on flat land while changing attack angle using the load cell to measure tension. The fluid drag of the float and ground gear was highest at an attack angle of 60°, regardless of shape, size, and flow velocity. The resistance coefficients of the float and ground gear varied depending on the attack angle and tended to be lower at small attack angles. The frictional drag of the ground gear was greater when the axis of rotation had a small attack angle in the towing direction compared to other attack angles. We then investigated a method for designing bottom-towed gear that reduces drag while maintaining the size, buoyancy, and sinking force of conventional fishing gear parts. This gear design showed 1.2% drag reduction and an estimated 0.8% improvement in fuel efficiency per haul.

Funder

Korea Institute of Marine Science & Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Low impact and fuel efficient fishing—Looking beyond the horizon

2. Von Brandt’s Fish Catching Methods of the World;Gabriel,2005

3. Annual Fuel Oil Conumptions of Japanese Fishing Vessels;Hasegawa;Tech. Rept. Nat. Res. Inst. Fish Eng.,2008

4. Oil Market Report, 66p http://www.oilmarketreport.org

5. Modern History of Nagasaki Prefecture Fishery;Kataoka,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3