Research on Stability Evaluation of Perilous Rock on Soil Slope Based on Natural Vibration Frequency

Author:

Jia Yanchang1,Song Guihao1,Wang Luqi2ORCID,Jiang Tong1ORCID,Zhao Jindi1,Li Zhanhui1

Affiliation:

1. College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Civil Engineering, Chongqing University, Chongqing 400030, China

Abstract

Perilous rock instability on the soil slope brings a substantial threat to project operation and even people’s lives. The buried depth of the perilous rock is a challenge to deal with and primarily determines its stability, and the indirect rapid identification of its buried depth is the key to its stability evaluation. The paper aims to find a new and quick method to measure the buried depth of perilous rock on the soil slope and to solve the hard-to-measure buried depth stability evaluation. When the damping ratio is less than one, and the deformation is linear elastic throughout the amplitude range, the potentially perilous rock vibration model may reduce to a multi-degree-of-freedom vibration one. By theoretical deduction, a quantitative relationship is established among the perilous rock mass, the basement response coefficient, the buried depth of the perilous rock, and the natural horizontal vibration frequency. In addition, the accuracy of this relationship is confirmed via numerous indoor experiments, showing that the horizontal vibration frequency of the perilous rock model in one dimension increases as the buried depth increases. Finally, based on the natural vibration frequency and guided by the limit balance model, a stability evaluation model of the perilous rock on the soil slope is constructed. Hence, the example shows that the method is feasible. The research findings are of vital significance for the stability evaluation of the perilous rock on the soil slope and give a novel approach and theoretical foundation for quick identification and monitoring.

Funder

National Natural Science Foundation of China

Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3