Static and Dynamic Cyclic Fatigue Resistance of Nickel-Titanium Rotary Instruments in a Double-Curved Stainless Steel Artificial Canal

Author:

Le Hoang-Lan-Anh1,Tran Thuan-Loc1,Nguyen Thu-Thuy1,Pham Tran-Lan-Khue1,Pham Van-Khoa1

Affiliation:

1. Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, 652 Nguyen Trai Street, Ward 11, District 5, Ho Chi Minh City 700000, Vietnam

Abstract

The present study aims to measure the number of cycles leading to fracture (NCF) of instruments in static and dynamic cyclic fatigue situations under body temperature in stainless steel double-curved canals. The framework was constructed to establish the movement of instruments occurring at a stable body temperature. A step motor, a holding system for an endodontic handpiece, created the movement in and out of the artificial canal of the file mounted on the handpiece. A total of 30 instruments of ProTaper Universal and ProTaper Next (Dentsply Sirona, Maillefer, Ballaigues, Switzerland) were divided into three groups of 10 per group. For group 1 (10 PTU F2), files were rotated in static cycles. For groups 2 (10 PTU F2) and 3 (10 PTN X2), files were rotated in dynamic cycles. Files were rotated using proprietary programs, and the times the files were rotated before fracture were recorded. Data were analyzed using survival probabilities and regression with life data. The ProTaper Next in the dynamic cycles had the largest NCF, and the ProTaper Universal in the static condition had the least. New modes of rotation, material, and design have affected the cyclic fatigue resistance of the instrument.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3