Hybrid Random Forest-Based Models for Earth Pressure Balance Tunneling-Induced Ground Settlement Prediction

Author:

Yang Peixi1,Yong Weixun1,Li Chuanqi2ORCID,Peng Kang1,Wei Wei3,Qiu Yingui1,Zhou Jian1ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. Laboratory 3SR, CNRS UMR 5521, Grenoble Alpes University, 38000 Grenoble, France

3. Norin Mining Ltd., Beijing 100053, China

Abstract

Construction-induced ground settlement is a serious hazard in underground tunnel construction. Accurate ground settlement prediction has great significance in ensuring the surface building’s stability and human safety. To that end, 148 sets of data were collected from the Singapore Circle Line rail traffic project containing seven defining parameters to create a database for predicting ground settlement. These parameters are the tunnel depth (H), the tunnel advance rate (AR), the EPB earth pressure (EP), the mean SPTN value from the soil crown to the surface (Sm), the mean water content of the soil layer (MC), the mean modulus of elasticity of the soil layer (E), and the grout pressure used for injecting grout into the tail void (GP). Three hybrid models consisting of random forest (RF) and three types of meta-heuristics, Ant Lion Optimizier (ALO), Multi-Verse Optimizer (MVO), and Grasshopper Optimization Algorithm (GOA), were developed to predict ground settlement. Furthermore, the mean absolute error (MAE), the mean absolute percentage error (MAPE), the coefficient of determination (R2) and the root mean square error (RMSE) were used to assess predictive performance of the constructed models for predicting ground settlement. The evaluation results demonstrated that the GOA-RF with a population size of 10 has achieved the most outstanding predictive capability with the indices of MAE (Training set: 2.8224; Test set: 2.3507), MAPE (Training set: 40.5629; Test set: 38.5637), R2 (Training set: 0.9487; Test set: 0.9282), and RMSE (Training set: 4.93; Test set: 3.1576). Finally, the sensitivity analysis results indicated that MC, AR, Sm, and GP have a significant impact on ground settlement prediction based on the GOA-RF model.

Funder

National Natural Science Foundation Project of China

Distinguished Youth Science Foundation of Hunan Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3