Extraordinary Field Emission of Diamond Film Developed on a Graphite Substrate by Microwave Plasma Jet Chemical Vapor Deposition

Author:

Hsu Hua-Yi1,Yen Jing-Shyang2,Lin Chun-Yu1,Liu Chi-Wen1,Aranganadin Kaviya3,Lin Chii-Ruey4,Sun Jwo-Shiun2,Lin Ming-Chieh3ORCID

Affiliation:

1. Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Electronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

3. Multidisciplinary Computational Laboratory, Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea

4. Department of Mechanical Engineering, Minghsin University of Science and Technology, Hsinchu 30400, Taiwan

Abstract

This work reports both numerical and experimental studies of the reconditioning of a microwave plasma jet chemical vapor deposition (MPJCVD) system for the growth of diamond film. A three-dimensional plasma fluid model is constructed for investigating and conditioning the MPJCVD system and optimizing its operating conditions. The methodology solves electromagnetic wave and plasma dynamics self-consistently using an adaptive finite element method as implemented in COMSOL Multiphysics. The whole system has been modeled under varying parameters, including the reactor geometry, microwave power, and working gas pressure. Using an operating condition identical to the optimized simulation results, the MPJCVD system successfully fabricates a diamond-thin film on a graphite substrate. The SEM image reveals the presence of a diamond film uniformly distributed with particles of a size of ~1 μm. The field emission from the diamond film grown from our homemade MPJCVD system on the graphite substrate presents extraordinary properties, i.e., extremely high current density and relatively low turn-on voltage. The turn-on electric field observed could be as low as ~4 V/μm. This developed model provides valuable physical insights into the MPJCVD system, which guided performance improvements. The work may find applications in surface hardening and provide a better cold cathode for field electron emission.

Funder

Ministry of Science and Technology

Hanyang University

National Research Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3