MixFormer: A Self-Attentive Convolutional Network for 3D Mesh Object Recognition

Author:

Huang Lingfeng1,Zhao Jieyu1,Chen Yu1

Affiliation:

1. Mobile Network Application Technology Laboratory, School of Information Science and Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China

Abstract

3D mesh as a complex data structure can provide effective shape representation for 3D objects, but due to the irregularity and disorder of the mesh data, it is difficult for convolutional neural networks to be directly applied to 3D mesh data processing. At the same time, the extensive use of convolutional kernels and pooling layers focusing on local features can cause the loss of spatial information and dependencies of low-level features. In this paper, we propose a self-attentive convolutional network MixFormer applied to 3D mesh models. By defining 3D convolutional kernels and vector self-attention mechanisms applicable to 3D mesh models, our neural network is able to learn 3D mesh model features. Combining the features of convolutional networks and transformer networks, the network can focus on both local detail features and long-range dependencies between features, thus achieving good learning results without stacking multiple layers and saving arithmetic overhead compared to pure transformer architectures. We conduct classification and semantic segmentation experiments on SHREC15, SCAPE, FAUST, MIT, and Adobe Fuse datasets. Experimental results show that the network can achieve 96.7% classification and better segmentation results by using fewer parameters and network layers.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3