Abstract
Real-time fluoro-sensing is a promising crop sensing technology to support variable-rate nutrient management for precision agricultural practices. The objective of this study was to evaluate the potential of fluoro-sensing to detect the variability of nitrogen (N) and potassium (K) in the crop canopy at the early growth stages of maize (before the V6 crop growth stage). This study was conducted under greenhouse conditions in pots filled with silica sand, and maize plants were supplied with modified Hoagland’s solution with different rates of N and K. Sensor readings were collected using a Multiplex®3 fluorescence sensor and analyzed using ANOVA (analysis of variance) to test differences in crop response to nutrient rates. Regression analysis was used to assess the ability of fluorescence sensor-based indices to estimate N and K in the crop canopy. The results of this study indicate that all fluorescence indices under consideration enabled the detection of N variability in the maize canopy prior to the V2 crop growth stage. The NBI_B (nitrogen balance index blue) index enabled N uptake detection (R2 = 0.99) as early as the V2 crop growth stage. However, the fluorescence indices failed to identify K deficiency, as the maize plants with K treatments showed little to no variability of this nutrient at early crop growth stages as measured by plant tissue analysis. The results present a tremendous opportunity to assess N uptake at early growth stages of maize for precision nitrogen application. We recommend using fluorescence sensor-based NBI_B or NBI_R (Nitrogen balance index red) for early detection of nitrogen uptake in maize for precision nitrogen management.
Subject
General Earth and Planetary Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献