Sustainable Energy Development: History and Recent Advances

Author:

Akpan Joseph1ORCID,Olanrewaju Oludolapo1ORCID

Affiliation:

1. Industrial Engineering Department, Durban University of Technology, Durban 4001, South Africa

Abstract

Sustainable energy development (SED) is a crucial component of the Sustainable Development Goals (SDG), aiming to maintain economic and social progress while protecting the environment and mitigating climate change’s effects. SED serves as a transition paradigm for sustainable development, providing a blueprint for energy peace and prosperity for people and all uses. This article presents the history of SED and then uses a critical discourse approach to summarize existing review studies in SED. Ten interlinked themes of SED are identified, with two of them considered to be among the least studied in existing SED reviews and in the current global discussion around climate change. This study explores these two themes, which include energy financing and the need for 100% renewable energy (RE), a sub-theme of decarbonization strategy working towards the 1.5–2.0 °C scenario. The study suggests that the current G20 countries’ contributions, if maintained continuously per annum, in addition to 80% more funding from private investment compared to the amount in the 1.5 °C scenario financial requirements for clean energy, are sufficient to limit global warming. In addition to the present drive for 100% RE, the article also discusses emerging issues, such as energy storage options with an indication of hydrogen as the most promising, other energy-related development agendas, and the need for regional security stability to prevent energy wars. Selected SED decarbonization strategies are presented across the power, transport, building, and industrial sectors. The study concludes with progress and directions for future research, mainly the need for re-defining nationally determined contribution (NDC) through an emissions budgeting and centralized global or regional emissions stock-taking strategy working towards the 1.5 °C scenario.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference155 articles.

1. Daniel, R., Yuqi, Z., Richard, G.N., Brian, C.P., and Aaron, B. (2023). Global Energy Outlook 2023: Sowing the Seeds of an Energy Transition, Resources for the Future.

2. IEA (2023). Oil 2023, IEA. Available online: https://www.iea.org/reports/oil-2023.

3. World Commission on Environment and Development (1987). Our Common Future: Towards Sustainable Development, World Commission on Environment and Development. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf.

4. (2023, June 14). Climate Interactive. Available online: https://www.climateinteractive.org.

5. IEA (2022). World Energy Outlook 2022, IEA. Available online: https://www.iea.org/reports/world-energy-outlook-2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards the 1.5°C Climate Scenario: Global Emissions Reduction Commitment Simulation and the Way Forward;Global Warming - A Concerning Component of Climate Change [Working Title];2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3