Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia

Author:

Kong ZhiweiORCID,Zhou Chuanshe,Chen Liang,Ren Ao,Zhang DongjieORCID,Basang Zhuzha,Tan Zhiliang,Kang JinheORCID,Li Bin

Abstract

Changes in the environment such as high-altitude hypoxia (HAH) high-altitude hypoxia can lead to adaptive changes in the blood system of mammals. However, there is limited information about the adaptation of Holstein dairy cows introduced to high-altitude areas. This study used 12 multiparous Holstein dairy cows (600 ± 55 kg, average three years old) exposed to HAH conditions in Nyingchi of Tibet (altitude 3000 m) and HAH-free conditions in Shenyang (altitude 50 m). The miRNA microarray analysis and iTRAQ proteomics approach (accepted as more suitable for accurate and comprehensive prediction of miRNA targets) were applied to explore the differences in the plasma proteomic and miRNA profiles in Holstein dairy cows. A total of 70 differential miRNAs (54 up-regulated, Fold change (FC) FC > 2, and 16 down-regulated, FC < 0.5) and 226 differential proteins (132 up-regulated, FC > 1.2, and 94 down-regulated, FC < 0.8) were found in the HAH-stressed group compared with the HAH-free group. Integrative analysis of proteomic and miRNA profiles demonstrated the biological processes associated with differential proteins were the immune response, complement activation, protein activation, and lipid transport. The integrative analysis of canonical pathways were most prominently associated with the APR signaling (z = 1.604), and LXR/RXR activation (z = 0.365), and FXR/RXR activation (z = 0.446) pathways. The current results indicated that Holstein dairy cows exposed to HAH could adapt to high-altitude hypoxia by up-regulating the APR, activating the LXR/RXR and FXE/RXR pathways.

Funder

China Hunan Provincial Science and Technology Department

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3