Author:
Jeong Yong-Jin,Hong Tae-Hwa,Lee Hak-Jun,Kim Kihyun
Abstract
The electroadhesion pad is mainly studied for applications, such as climbing robots and grippers. In this paper, we present our study with the confirmation of the adhesion properties of the electroadhesion pad with a double-insulating layer, pad modeling, and optimal design. Modeling and analysis consider the air layer generated during the manufacturing of both conventional single-insulated structures and dual-insulated structures. Through the finite element analysis simulation, the characteristics of the electroadhesion were verified, and modeling verification was performed, based on the variables that had a large influence as follows: applied voltage, electrode area, dielectric thickness, and permittivity. The electrode is made of aluminum, the substrate is made of silicon, and the dielectric is made of polyimide film. An error of up to 8.3% was found between the modeling and simulation. The optimization results were validated based on a pad applied to a climbing robot measuring 320×480mm² and weighing 2.8 kg. As a result, the optimal pad design resulted in an error of 7.3% between the modeling and simulation.
Funder
Korea Agency for Infrastructure Technology Advancement
multi-material machining innovative technology research center
Subject
Control and Optimization,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献