Water Body Extraction of the Weihe River Basin Based on MF-SegFormer Applied to Landsat8 OLI Data

Author:

Zhang Tianyi1ORCID,Qin Chenhao1,Li Weibin1,Mao Xin1,Zhao Liyun2,Hou Biao1,Jiao Licheng1

Affiliation:

1. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an 710071, China

2. Shaanxi Provincial Hydrology and Water Resources Survey Center, Xi’an 710071, China

Abstract

In the era of big data, making full use of remote sensing images to automatically extract surface water bodies (WBs) in complex environments is extremely challenging. Due to the weak capability of existing algorithms in extracting small WBs and WB edge information from remote sensing images, we proposed a new method—Multiscale Fusion SegFormer (MF-SegFormer)—for WB extraction in the Weihe River Basin of China using Landsat 8 OLI images. The MF-SegFormer method adopts a cascading approach to fuse features output by the SegFormer encoder at multiple scales. A feature fusion (FF) module is proposed to enhance the extraction of WB edge information, while an Atrous Spatial Pyramid Pooling (ASPP) module is employed to enhance the extraction of small WBs. Furthermore, we analyzed the impact of four kinds of band combinations on WB extraction by the MF-SegFormer model, including true color composite images, false color images, true color images, and false color images enhanced by Gaussian stretch. We also compared our proposed method with several different approaches. The results suggested that false color composite images enhanced by Gaussian stretching are beneficial for extracting WBs, and the MF-SegFormer model achieves the highest accuracy across the study area with a precision of 77.6%, recall of 84.4%, F1-score of 80.9%, and mean intersection over union (mIoU) of 83.9%. In addition, we used the determination coefficient (R2) and root-mean-square error (RMSE) to evaluate the performance of river width extraction. Our extraction results in an overall R2 of 0.946 and an RMSE of 28.21 m for the mainstream width in the “Xi’an-Xianyang” section of the Weihe River. The proposed MF-SegFormer method used in this study outperformed other methods and was found to be more robust for WB extraction.

Funder

2022 Shaanxi Water Conservancy Development Foundation

Ningxia Autonomous Region’s 2020 Key R&D Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved DeepLabv3+ Based Flood Water Body Extraction Model for SAR Imagery;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Super-Resolution Water Body Extraction Based on MF-SegFormer;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. QTU-Net: Quaternion Transformer-Based U-Net for Water Body Extraction of RGB Satellite Image;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3