Halloysite-Zinc Oxide Nanocomposites as Potential Photocatalysts

Author:

Zsirka BalázsORCID,Vágvölgyi Veronika,Horváth Erzsébet,Juzsakova Tatjána,Fónagy OrsolyaORCID,Szabó-Bárdos Erzsébet,Kristóf János

Abstract

The synthesis and structural characterization of synthetic zinc oxide and halloysite-based zinc oxide nanocomposites (with 2–28 m/m% ZnO content) are presented. The chemical precipitation of zinc hydroxide precursors and its subsequent drying at 80 °C yielded dominantly zinc oxide (zincite). Thermal treatment at 350 °C completely transformed the remaining precursor to ZnO without causing structural dehydroxylation of the halloysite support. The procedure yielded zinc oxide nanoparticles with 10–22 nm average size having quasi-spherical scale-like morphology. The specific surface area of the synthetic zinc oxide was found to be low (13 m2/g), which was significantly enhanced after nanocomposite preparation (27–47 m2/g). The photocatalytic activity of the prepared nanocomposites was probed by the degradation of a phenolic compound (4-nitrophenol) upon UV irradiation in liquid phase. Compared to their individual constituents, an increased activity of the nanocomposites was observed, while the SSA-normalized photocatalytic activity revealed a synergic effect in nanocomposites above 9 m/m% ZnO content. The nanocomposites were found to be stable at pH = 5.6, with a minor and major mobilization of zinc ions at pH = 12.4 and pH = 1.9, respectively. The toxicity of leachates in different pH environments by Vibrio fischeri bioluminescence indicated low toxicity for ZnO nanoparticles and insignificant toxicity for the nanocomposites. The enhanced photocatalytic activity together with the lower toxicity of the halloysite-ZnO nanocomposites highlight their application potential in water treatment.

Funder

Ministry for Innovation and Technology

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3