Study on Low-Temperature Performance Decay of Composite-Modified Porous Asphalt Mixture under Medium- and High-Temperature Water Erosion

Author:

Chai Chao123,Zhang Da4,Wang Zhongkun125,Ding Guangya12

Affiliation:

1. Department of Civil Engineering, College of Architecture and Engineering, Wenzhou University, Wenzhou 325035, China

2. Key Laboratory of Soft Soil Foundation and Coastal Reclamation Engineering Technology in Zhejiang Province, Wenzhou 325035, China

3. Wenzhou Building Energy Conservation, Emission Reduction and Disaster Prevention and Reduction Engineering Technology Research Center, Wenzhou 325035, China

4. Jiangsu Xiandai Road and Bridge Co., Ltd., Nanjing 210046, China

5. Collaborative Innovation Center for mudflat Renovation Project and Ecological Protection in Zhejiang Province, Wenzhou 325035, China

Abstract

This paper studies the decay law of low-temperature crack resistance performance of rubber powder basalt fiber composite-modified porous asphalt concrete (CM-PAC) under medium- and high-temperature water erosion. Firstly, the prepared Marshall specimens were subjected to water erosion treatment at different temperatures of 20 °C, 40 °C, and 60 °C for 0–15 days. Then, the processed specimens were subjected to low-temperature splitting tests, and acoustic emission data during the splitting test process were collected using an acoustic emission device. It can be seen that the low-temperature splitting strength and low-temperature splitting stiffness modulus of CM-PAC gradually decrease with the increase in water erosion time. The maximum reduction rates of the two compared to the control group reached 72.63% and 91.60%, respectively. The low-temperature splitting failure strain gradually increases. Under the same erosion time, the higher the temperature of water, the more significant the amplitude of changes in the above parameters. In addition, it is shown that as the water erosion time increases, the first stage of loading on the specimen gradually shortens, and the second and third stages gradually advance. As the water temperature increases and the water erosion time prolongs, the acoustic emission energy released by the CM-PAC specimen during the splitting process slightly decreases. The application of acoustic emission technology in the splitting process can clarify the changes in the failure pattern of CM-PAC specimens during the entire loading stage, which can better reveal the impact of medium- to high-temperature water on the performance degradation of CM-PAC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3