Data Imputation of Soil Pressure on Shield Tunnel Lining Based on Random Forest Model

Author:

Wang Min1,Ye Xiao-Wei2ORCID,Ying Xin-Hong2,Jia Jin-Dian2,Ding Yang3ORCID,Zhang Di4,Sun Feng4

Affiliation:

1. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China

2. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China

3. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China

4. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China

Abstract

With the advancement of engineering techniques, underground shield tunneling projects have also started incorporating emerging technologies to monitor the forces and displacements during the construction and operation phases of shield tunnels. Monitoring devices installed on the tunnel segment components generate a large amount of data. However, due to various factors, data may be missing. Hence, the completion of the incomplete data is imperative to ensure the utmost safety of the engineering project. In this research, a missing data imputation technique utilizing Random Forest (RF) is introduced. The optimal combination of the number of decision trees, maximum depth, and number of features in the RF is determined by minimizing the Mean Squared Error (MSE). Subsequently, complete soil pressure data are artificially manipulated to create incomplete datasets with missing rates of 20%, 40%, and 60%. A comparative analysis of the imputation results using three methods—median, mean, and RF—reveals that this proposed method has the smallest imputation error. As the missing rate increases, the mean squared error of the Random Forest method and the other two methods also increases, with a maximum difference of about 70%. This indicates that the random forest method is suitable for imputing monitoring data.

Funder

National Key R&D Program of China

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3