Optimizing Traffic Flow in Smart Cities: Soft GRU-Based Recurrent Neural Networks for Enhanced Congestion Prediction Using Deep Learning

Author:

Abdullah Sura Mahmood1,Periyasamy Muthusamy2,Kamaludeen Nafees Ahmed3,Towfek S. K.45,Marappan Raja6ORCID,Kidambi Raju Sekar6,Alharbi Amal H.7,Khafaga Doaa Sami7ORCID

Affiliation:

1. Department of Computer Sciences, University of Technology, Baghdad 110066, Iraq

2. Department of Cyber Security, Paavai Engineering College (Autonomous), Namakkal 637018, India

3. Department of Computer Science, Jamal Mohamed College (Autonomous), Bharathidasan University, Tiruchirappalli 620020, India

4. Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt

5. Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA

6. School of Computing, SASTRA Deemed University, Thanjavur 613401, India

7. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Recently, different techniques have been applied to detect, predict, and reduce traffic congestion to improve the quality of transportation system services. Deep learning (DL) is becoming increasingly valuable for solving critiques. DL applications in transportation have been collected in several recently published surveys over the last few years. The existing research has discussed the cloud environment, which does not provide timely traffic forecasts, which is the cause of frequent traffic accidents. Thus, a solid understanding of the difficulties in predicting congestion is required because the transportation system varies widely between non-congested and congested states. This research develops a bi-directional recurrent neural network (BRNN) using Gated Recurrent Units (GRUs) to extract and classify traffic into congested and non-congested. This research uses a bidirectional recurrent neural network to simulate and forecast traffic congestion in smart cities (BRNN). Urban regions worldwide struggle with traffic congestion, and conventional traffic control techniques have failed miserably. This research suggests a data-driven approach employing BRNN for traffic management in smart cities, which uses real-time data from sensors and linked devices to control traffic more efficiently. The primary measures include predicting traffic metrics such as speed, weather, current, and accident probability. Congestion prediction performance has also been improved by extracting more features such as traffic, road, and weather conditions. The proposed model achieved better measures than the existing state-of-the-art methods. This research also explores an overview and analysis of several early initiatives that have shown promising results; moreover, it explores two potential future research approaches to increase the accuracy and efficiency of large-scale motion prediction.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3