Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit

Author:

Bazaluk Oleg1ORCID,Anisimov Oleh2,Saik Pavlo3ORCID,Lozynskyi Vasyl3ORCID,Akimov Oleksandr4,Hrytsenko Leonid2

Affiliation:

1. Belt and Road Initiative Institute for Chinese-European Studies (BRIICES), Guangdong University of Petro-Chemical Technology, Maoming 525000, China

2. Department of Surface Mining, Dnipro University of Technology, 49005 Dnipro, Ukraine

3. Department of Mining Engineering and Education, Dnipro University of Technology, 49005 Dnipro, Ukraine

4. Interregional Academy of Personnel Management, 03039 Kyiv, Ukraine

Abstract

In the surface mining of mineral deposits, land resources suitable for agricultural purposes are inappropriately spent in large volumes. When mining deep open pits, overburden rocks are mainly transported to the surface. The optimal solution for reducing the area of disturbed lands is the placement of overburden rocks in internal dumps in the open pit. This is especially suitable when mining a mineral deposit with several open pits where at least one of them is depleted. Therefore, it is important to assess the feasibility of building an internal dump, based on the stability parameters of its slopes and the safe distance for placing mining equipment within its boundaries, which was the focus of this research. Numerical modeling with Slide 5.0 software was used to determine the stability of the dump slope inside the open pit and the safe distance from the upper slope edge for placing mining equipment. This reflected the geomechanical situation occurring within the boundaries of the dump formed in the open-pit field with a high degree of reliability. It was determined that the maximum standard safety factor values of the open-pit slopes are within the limits when the overburden rocks border on the hard bedrock (Ks.s.f ≥ 1.2). Under the condition where the dump slope bordered on sedimentations represented by clays, loams, and sands with a strength of 2–3 on the Mohs scale, the safety factor decreased by 22%. It was determined that the minimum safe distance from the outer contour of the dragline base to the upper edge of a single-tier dump was 15.5 m with a safety factor of 1.21. The maximum safe distance values in the range of 73.5–93 m were concentrated within the boundaries of sections 5–9, with a safety factor from 1.18 to 1.28. When the dragline was located within the boundaries of section 7, the dump construction works should be conducted only if the dump exist for up to 3 years. Based on the identified parameters, on the example of using the ESH-11/70 walking dragline, a technological scheme of its operation was developed with the allocation of safe boundaries for its placement when forming an internal dump. The results obtained are useful for the development of projects for the reclamation of depleted open pits.

Funder

Guangdong University of Petrochemical Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3