Features of Degassing from Overburden Rock Massifs: A Case Study Using Radon

Author:

Leshukov Timofey1ORCID,Larionov Aleksey2ORCID,Nastavko Ekaterina1ORCID,Kaizer Philipp1,Legoshchin Konstantin1ORCID

Affiliation:

1. Department of Geology and Geography, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia

2. Department of Genetics and Fundamental Medicine, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia

Abstract

Overburden rock massifs resulting from open-pit coal mining are very common objects in the world’s mining regions. These locations pose a significant challenge as the global mining industry expands. These dumps are capable of self-burning for quite a long time. The displacement and sliding of these massifs can cause catastrophic consequences. In addition, these objects emit a significant amount of greenhouse gases into the atmosphere. Therefore, it is necessary to manage such objects and implement appropriate measures to limit their impact on the environment. In this work, we studied soil radon volume activity (VAR) and radon flux density (RFD) on the surface of the overburden rock massif of coal-bearing mining rocks and also made visual fixation of disturbances in the body of the massif, which appeared in the process of its movement. We found anomalies of VAR and RFD on the surface of the overburden extending from north to south. These anomalies were extended along the strike of the faults found in the body of the massif. Additionally, the radon anomalies coincided with the anomalies of methane gas emission previously measured for this object. Thus, we determined that the exit of gases from the body of the massif is carried out through fault (weakened) zones in the body of the massif. According to the results of the study, we propose to carry out radon monitoring in order to detect the spontaneous ignition process of the massif or the increase of its mobility. This will also allow us to take appropriate measures to stabilize the massif or to extinguish the dump before or simultaneously with the biological stage of reclamation.

Funder

Decree of the Government of the Russian Federation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3