Fusion Algorithm of the Improved A* Algorithm and Segmented Bézier Curves for the Path Planning of Mobile Robots

Author:

Lai Rongshen1,Wu Zhiyong1,Liu Xiangui1,Zeng Nianyin2ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China

2. Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China

Abstract

In terms of mobile robot path planning, the traditional A* algorithm has the following problems: a long searching time, an excessive number of redundant nodes, and too many path-turning points. As a result, the shortest path obtained from planning may not be the optimal movement route of actual robots, and it will accelerate the hardware loss of robots. To address the aforementioned problems, a fusion algorithm for path planning, combining the improved A* algorithm with segmented second-order Bézier curves, is proposed in this paper. On the one hand, the improved A* algorithm is presented to reduce unnecessary expansion nodes and shorten the search time, which was achieved from three aspects: (1) the traditional 8-neighborhood search strategy was adjusted to 5-neighborhood according to the orientation of the target point relative to the current node; (2) the dynamic weighting factor of the heuristic function was introduced into the evaluation function of the traditional A* algorithm; and (3) the key node extraction strategy was designed to reduce the redundant nodes of the optimal path. On the other hand, the optimal path planned by the improved A* algorithm was smoothed using segmented second-order Bézier curves. The simulation results show that the improved A* algorithm can effectively reduce the search time and redundant nodes and the fusion algorithm can reduce the path curvature and path length to a certain extent, improving path safety.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3