Abstract
The article presents the assessment of solutions and dried residues precipitated from solutions after the bioleaching process of Printed Circuit Boards (PCB) utilizing the Acidithiobacillus ferrooxidans. The obtained dried residues precipitated from bioleaching solution (leachate) and control solution were tested using morphology, phase, and chemical composition analysis, with particular emphasis on the assessment of crystalline and amorphous components. The analysis of the dried residues from leachate after bioleaching as well as those from the sterile control solution demonstrated a difference in the component oxidation—the leachate consisted of mainly amorphous spherical particles in diameter up to 200 nm, forming lacy aggregates. In the specimenform control solution larger particles (up to 500 nm) were observed with a hollow in the middle and crystalline outer part (probably Fe2O3, CuFeS2, and Cu2O). The X-ray diffraction phase analysis revealed that specimen obtained from leachate after bioleaching consisted mainly of an amorphous component and some content of Fe2O3 crystalline phase, while the dried residue from control solution showed more crystalline components. The share of the crystalline and amorphous components can be related to efficiency in dissolving metals during bioleaching. Obtained results of the investigation confirm the activity and participation of the A. ferrooxidans bacteria in the solubilization process of electro-waste components, with their visible degradation–acceleration of the reaction owing to a continuous regeneration of the leaching medium. The performed investigations allowed to characterize the specimen from leachate and showed that the application of complementary cross-check of the micro (SEM and S/TEM) and macro (ICP-OES and XRD) methods are of immense use for complete guidance assessment and obtained valuable data for the next stages of PCBs recycling.
Funder
Faculty of Mechanical Engineering, Silesian University of Technology
Silesian University of Technology
Subject
General Materials Science
Reference41 articles.
1. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential;Forti,2020
2. The Global E-Waste Monitor–2017;Baldé,2017
3. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching
4. A review on printed circuit boards waste recycling technologies and reuse of recovered nonmetallic materials;Sohaili;Int. J. Sci. Eng. Res.,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献