Enhanced Energy Storage Performance of PVDF-Based Composites Using BN@PDA Sheets and Titania Nanosheets

Author:

Zhu Congcong,Yin Jinghua,Feng YuORCID,Li Jialong,Li Yanpeng,Zhao He,Yue Dong,Liu Xiaoxu

Abstract

With the rapid development of modern electrical and electronic applications, the demand for high-performance film capacitors is becoming increasingly urgent. The energy density of a capacitor is dependent on permittivity and breakdown strength. However, the development of polymer-based composites with both high permittivity (εr) and breakdown strength (Eb) remains a huge challenge. In this work, a strategy of doping synergistic dual-fillers with complementary functionalities into polymer is demonstrated, by which high εr and Eb are obtained simultaneously. Small-sized titania nanosheets (STNSs) with high εr and high-insulating boron nitride sheets coated with polydopamine on the surface (BN@PDA) were introduced into poly(vinylidene fluoride) (PVDF) to prepare a ternary composite. Remarkably, a PVDF-based composite with 1 wt% BN@PDA and 0.5 wt% STNSs (1 wt% PVDF/BN@PDA−STNSs) shows an excellent energy storage performance, including a high εr of ~13.9 at 1 Hz, a superior Eb of ~440 kV/mm, and a high discharged energy density Ue of ~12.1 J/cm3. Moreover, the simulation results confirm that BN@PDA sheets improve breakdown strength and STNSs boost polarization, which is consistent with the experimental results. This contribution provides a new design paradigm for energy storage dielectrics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3