Author:
Sumega Martin,Rafajdus Pavol,Stulrajter Marek
Abstract
This article presents an effective algorithm to reduce acoustic noise, vibrations and torque ripple caused by cogging torque in three-phase Permanent Magnet (PM) motors under Field Oriented Control (FOC) operation. Cogging torque profile is suitably included into q-axis current reference, which must be then precisely tracked in order to mitigate acoustic noise, vibrations, torque ripple and speed ripple caused by cogging torque. Conventional FOC structure has been extended by a Current Harmonics Controller (CHC) to achieve precise control of dq current harmonics for all operation speeds, which is crucial to reduce impact of cogging torque and increase performance of electric drive with PM motor. Effectiveness of proposed control technique is experimentally verified by vibrations and acoustic noise measurements.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献