Numerical Investigation of the Required Quantity of Inert Gas Agents in Fire Suppression Systems

Author:

Hu Xiaoqin,Kraaijeveld ArjenORCID,Log TorgrimORCID

Abstract

Inert gas agents have the potential to be widely used in fire suppression systems due to health and safety concerns associated with active chemicals. To suppress fire while minimizing hypoxic effects in an occupied area, the discharge quantity of inert gas agents should be carefully designed to dilute the oxygen concentration to a specific threshold level. In this study, the general expressions between oxygen concentration, the discharge rate of inert gas agents, and the ventilation rate of the air-agent mixture are derived first. Then, explicit formulas to calculate the discharge/ventilation rate and the required quantity of inert gas agents are given if the discharge rate and ventilation rate both are constants. To investigate the dilution and fire extinguishing efficiencies of inert gas agents, two scenarios with a discharge of inert gas agents into an enclosure are modeled using the Fire Dynamic Simulator (FDS). The simulation results show that the average oxygen mass fraction approximately reaches the design level at the end of the discharge period. Variation in oxygen concentration along the enclosure height is analyzed. For the scenario with a fire source, oxygen mass fraction decreases fast as oxygen is consumed by the combustion process. Thus, the fire is extinguished a little earlier than the end of the discharge period.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3