Experimental and Numerical Investigation of Extinguishing Effectiveness of Inert-Gas Agents in a Leaky Enclosure

Author:

Hu XiaoqinORCID,Kraaijeveld ArjenORCID

Abstract

Gas-fire-suppression systems are currently applied to some specific buildings in Norway, as sprinkler systems may not provide sufficient protection in some cases. The application of inert-gas-fire-suppression systems for hazard class 6 buildings needs further intensive validation by experimental and numerical study. Due to the presence of cracks and ventilation systems, it becomes doubtful whether inert-gas agents can extinguish a deep-seated fire located in a leaky enclosure. In this study, tests and numerical simulations were both conducted to investigate the extinguishing effectiveness of inert-gas agents for a closet fire in a leaky apartment. The results show that the location of cracks plays a nonnegligible role in determining the oxygen level in the leaky apartment. The tests and simulations demonstrated that the gas-fire-suppression system successfully extinguished the closet fire even if the activation of the gas-fire-suppression system was postponed or the path available for the inert-gas agent to reach the fire source was narrowed. However, the sprinkler system failed to achieve this. The experimental data also demonstrated that the calculation method proposed in our previous work can be used to estimate the oxygen level in a leaky enclosure.

Funder

Western Norway University of Applied Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference27 articles.

1. Evaluering av Brann 9 Juni 2007 i Sveio Omsorgssenter,2007

2. Regulations on Technical Requirements for Construction Works,2017

3. Kvinne Alvorlig Skadd Etter Brann I Grimstad https://www.agderposten.no/nyheter/kvinne-alvorlig-skadd-etter-brann-i-grimstad/

4. Kvinne(85) Døde Som Følge av Røykutviking https://www.oa.no/biri/brann/innlandet-politidistrikt/kvinne-85-dode-som-folge-av-roykutvikling/s/5-35-343945

5. Halon Design Calculations

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3