Fault Detection of Bearing: An Unsupervised Machine Learning Approach Exploiting Feature Extraction and Dimensionality Reduction

Author:

Brito Lucas CostaORCID,Susto Gian AntonioORCID,Brito Jorge Nei,Duarte Marcus Antonio Viana

Abstract

The monitoring of rotating machinery is an essential activity for asset management today. Due to the large amount of monitored equipment, analyzing all the collected signals/features becomes an arduous task, leading the specialist to rely often on general alarms, which in turn can compromise the accuracy of the diagnosis. In order to make monitoring more intelligent, several machine learning techniques have been proposed to reduce the dimension of the input data and also to analyze it. This paper, therefore, aims to compare the use of vibration features extracted based on machine learning models, expert domain, and other signal processing approaches for identifying bearing faults (anomalies) using machine learning (ML)—in addition to verifying the possibility of reducing the number of monitored features, and consequently the behavior of the model when working with reduced dimensionality of the input data. As vibration analysis is one of the predictive techniques that present better results in the monitoring of rotating machinery, vibration signals from an experimental bearing dataset were used. The proposed features were used as input to an unsupervised anomaly detection model (Isolation Forest) to identify bearing fault. Through the study, it is possible to verify how the ML model behaves in view of the different possibilities of input features used, and their influences on the final result in addition to the possibility of reducing the number of features that are usually monitored by reducing the dimension. In addition to increasing the accuracy of the model when extracting correct features for the application under study, the reduction in dimensionality allows the specialist to monitor in a compact way the various features collected on the equipment.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3