Exploring Multidimensional Embeddings for Decision Support Using Advanced Visualization Techniques

Author:

Kurasova Olga1ORCID,Budžys Arnoldas1ORCID,Medvedev Viktor1ORCID

Affiliation:

1. Institute of Data Science and Digital Technologies, Vilnius University, 08412 Vilnius, Lithuania

Abstract

As artificial intelligence has evolved, deep learning models have become important in extracting and interpreting complex patterns from raw multidimensional data. These models produce multidimensional embeddings that, while containing a lot of information, are often not directly understandable. Dimensionality reduction techniques play an important role in transforming multidimensional data into interpretable formats for decision support systems. To address this problem, the paper presents an analysis of dimensionality reduction and visualization techniques that embrace complex data representations and are useful inferences for decision systems. A novel framework is proposed, utilizing a Siamese neural network with a triplet loss function to analyze multidimensional data encoded into images, thus transforming these data into multidimensional embeddings. This approach uses dimensionality reduction techniques to transform these embeddings into a lower-dimensional space. This transformation not only improves interpretability but also maintains the integrity of the complex data structures. The efficacy of this approach is demonstrated using a keystroke dynamics dataset. The results support the integration of these visualization techniques into decision support systems. The visualization process not only simplifies the complexity of the data, but also reveals deep patterns and relationships hidden in the embeddings. Thus, a comprehensive framework for visualizing and interpreting complex keystroke dynamics is described, making a significant contribution to the field of user authentication.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplifying Data Analysis: A Visualization Framework and Practical Application for Complex BEV Data;IFIP Advances in Information and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3