An Unsupervised Regularization and Dropout based Deep Neural Network and Its Application for Thermal Error Prediction

Author:

Tian Yang,Pan GuangyuanORCID

Abstract

Due to the large size of the heavy duty machine tool-foundation systems, space temperature difference is high related to thermal error, which affects to system’s accuracy greatly. The recent highly focused deep learning technology could be an alternative in thermal error prediction. In this paper, a thermal prediction model based on a self-organizing deep neural network (DNN) is developed to facilitate accurate-based training for thermal error modeling of heavy-duty machine tool-foundation systems. The proposed model is improved in two ways. Firstly, a dropout self-organizing mechanism for unsupervised training is developed to prevent co-adaptation of the feature detectors. In addition, a regularization enhanced transfer function is proposed to further reduce the less important weights of the process and improve the network feature extraction capability and generalization ability. Furthermore, temperature sensors are used to acquire temperature data from the heavy-duty machine tool and concrete foundation. In this way, sample data of thermal error predictive model are repeatedly collected from the same locations at different times. Finally, accuracy of the thermal error prediction model was validated by thermal error experiments, thus laying the foundation for subsequent studies on thermal error compensation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3