Affiliation:
1. S.M. Wu Manufacturing Research Center, University of Michigan, Ann Arbor, MI 48109
Abstract
This paper proposes a new thermal error modeling methodology called the Dynamic Thermal Error Modeling which improves the accuracy and robustness of the machine tool thermal error model. The characteristics of the thermoelastic system are investigated from the dynamic system viewpoint. The pseudo-hysteresis effect is revealed to be the major factor causing poor robustness of the conventional static thermal error model. System identification theory is applied to build the dynamic thermal error model for machine tool thermal error on-line prediction. The modeling procedure for the linear Output Error (OE) model is illustrated using simulation work for both one-dimensional spindle and two-dimensional machine structure thermal deformations. Model performance evaluation through spindle experiments shows that the thermal error dynamic model has advantages over the conventional static model in terms of model accuracy and robustness.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献