Study on the Dynamic Soil-Pile-Structure Interactive Behavior in Liquefiable Sand by 3D Numerical Simulation

Author:

Kwon Sun YongORCID,Yoo MintaekORCID

Abstract

The dynamic behavior of structures in liquefiable sand exhibits more complicated characteristics, due to the development of excess pore pressure caused by cyclic loading, than that in dry sand. Therefore, it is crucial to accurately predict the soil–pile structure behavior during liquefaction to prevent damage to the structures. In this study, three-dimensional numerical modeling was performed to predict the dynamic soil–pile behavior during liquefaction. To directly simulate pore pressure generation due to soil shear deformation, the Finn liquefaction model was applied and coupled with the Mohr-Coulomb elasto-plastic model. Soil nonlinearity was considered by applying hysteretic damping, and the interface model was applied to simulate various dynamic phenomena between the soil and pile. Simplified continuum modeling was introduced to prevent reflection wave generation and increase analysis efficiency. The applicability of the proposed numerical model was validated using the experimental results. Thereafter, a parametric study was conducted to provide a better understanding of the dynamic behavior of pile foundation during liquefaction. From a series of parametric studies, several important factors that can affect the dynamic pile responses in liquefiable sand were identified. Also, the characteristics of the dynamic soil–pile structure interactive behavior, which are significantly different from each other in liquefied and dry sand, were analyzed qualitatively and quantitatively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3