Experimental and Numerical Simulation Study of Water Infiltration Impact on Soil-Pile Interaction in Expansive Soil

Author:

Awadalseed Waleed1ORCID,Zhang Xingli1,Ji Yunpeng1,Wang XiangJin2,Bai Yuntian1,Zhao Honghua3ORCID

Affiliation:

1. State Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116023, China

2. DUT-BSU Joint Institute, Dalian University of Technology, China

3. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, 116023, China

Abstract

A laboratory model of a single pile embedded in Nanyang expansive soil and subjected to water infiltration is applied in this study to examine the interaction between the expansive soil and pile foundation upon water infiltration. The soil matric suction decreases as a result of the rising soil-water content. The amount of soil ground heave reaches its peak of 10.7 mm after 200 hours of water infiltration. As matric suction decreases, pile shaft friction also declines, which causes more of the load at the pile head to be carried by the pile base resulting in more pile settlements. A new numerical simulation method is provided to simulate this issue by coupling the subsurface flow, soil deformation, and hygroscopic swelling to investigate the expansive soil-pile response upon water infiltration. From the numerical simulation model, hygroscopic strain arises as a result of elevated moisture levels resulting from the entry of water, and due to ground heave and the mobilization of lateral soil swelling, the shear stress at the interface between the soil and the pile gradually increases over time. It reaches its maximum value of 4420 Pa at upper depths around 200 hours after the infiltration. The comparison between the lab model testing data and the numerical model results demonstrates a good level of concurrence.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3