Development of an Unmanned Surface Vehicle for the Emergency Response Mission of the ‘Sanchi’ Oil Tanker Collision and Explosion Accident

Author:

Pu Huayan,Liu YuanORCID,Luo Jun,Xie Shaorong,Peng Yan,Yang Yi,Yang Yang,Li Xiaomao,Su Zhou,Gao Shouwei,Shao Wenyun,Zhu Chuang,Ke Jun,Cui Jianxiang,Qu Dong

Abstract

Unmanned surface vehicles (USVs) as unmanned intelligent devices can replace humans to perform missions more efficiently and safely in dangerous areas. However, due to the complex navigation environment and special mission requirements, USVs face many challenges in emergency response missions for marine oil spill accidents. To solve these challenges in the emergency response mission of the ‘Sanchi’ oil tanker collision and explosion accident, we designed and deployed an USV to perform the missions of real-time scanning and water sampling in the shipwreck waters. Compared with the previous USVs, our USV owned the following characteristics: Firstly, the improved navigation control algorithms (path following and collision avoidance) can provide high navigation accuracy while ensuring navigation safety; Secondly, an improved launch and recovery system (LARS) enabled the USV to be quickly deployed and recovered in the mission area; Thirdly, a new sampling system was specially designed for the USV. Our USV completed the missions successfully, not only providing a lot of information for rescuers but also offering a scientific basis for follow-up work.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. High-Speed Unmanned Craft Eyed for Surveillance Role;Tiron;Natl. Def.,2002

2. Accurate Automation Corporationhttps://www.accurateautomation.com/content/Home

3. C-Target3https://www.asvglobal.com/product/c-target-3/

4. Basic navigation, guidance and control of an Unmanned Surface Vehicle

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3