Abstract
The aim of this study was to evaluate the contact pressure distribution of two different nickel-titanium (NiTi) endodontic rotary instruments against the root canal walls and to virtually predict their centering ability during shaping with finite element analysis (FEA). Resin blocks simulating root canals were used. One was shaped with ProGlider and ProTaper Next (PTN) X1-X2 and one with ScoutRace and BioRace (BR) 1, 2 and 3. Both resin blocks were virtually replicated with computer-aided design (CAD) software. The endodontic instruments ProTaper Next (PTN) X2 and BioRace BR3 were also replicated with CAD. The NiTi instruments and the shaped blocks geometries were discretized and exported for FEA. The instrument rotation in the root canals was simulated. The finite element simulation was performed by applying an insertion and extraction force of 2.5 N with a constant rotational speed (300 rpm). To highlight possible differences between pressure distributions against the root canal portions outside and inside the canal curvature, the parameter Var was originally defined. Var values were systematically lower for PTN X2, revealing a better centering ability. FEA proved effective for the virtual prediction of the centering ability of NiTi instruments during an early design phase without the use of prototypes.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference38 articles.
1. The role of mechanical instrumentation in the cleaning of root canals
2. Current Challenges and Concepts in the Preparation of Root Canal Systems: A Review
3. Cleaning and shaping the root canal;Schilder;Dent. Clin. North Am. Apr.,1974
4. Critical evaluation of root canal transportation by instrumentation
5. Mechanical root canal preparation with NiTi rotary instruments: Rationale, performance and safety: Status report for the American Journal of Dentistry;Bergmans;Am. J. Dent.,2001
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献