Scalable Implementation of Hippocampal Network on Digital Neuromorphic System towards Brain-Inspired Intelligence

Author:

Sun Wei,Wang Jiang,Zhang Nan,Yang Shuangming

Abstract

In this paper, an expanded digital hippocampal spurt neural network (HSNN) is innovatively proposed to simulate the mammalian cognitive system and to perform the neuroregulatory dynamics that play a critical role in the cognitive processes of the brain, such as memory and learning. The real-time computation of a large-scale peak neural network can be realized by the scalable on-chip network and parallel topology. By exploring the latest research in the field of neurons and comparing with the results of this paper, it can be found that the implementation of the hippocampal neuron model using the coordinate rotation numerical calculation algorithm can significantly reduce the cost of hardware resources. In addition, the rational use of on-chip network technology can further improve the performance of the system, and even significantly improve the network scalability on a single field programmable gate array chip. The neuromodulation dynamics are considered in the proposed system, which can replicate more relevant biological dynamics. Based on the analysis of biological theory and the theory of hardware integration, it is shown that the innovative system proposed in this paper can reproduce the biological characteristics of the hippocampal network and may be applied to brain-inspired intelligent subjects. The study in this paper will have an unexpected effect on the future research of digital neuromorphic design of spike neural network and the dynamics of the hippocampal network.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3