The treatment of sepsis: an episodic memory-assisted deep reinforcement learning approach
Author:
Funder
Innovation Strategy Research Program of Fujian Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-04099-7.pdf
Reference44 articles.
1. Gallagher J (2020) ‘Alarming’ one in five deaths due to sepsis”, BBC News. [Online]. Available: https://www.bbc.co.uk/news/health51138859. Accessed: 13 Feb 2020
2. Fernando SM, Reardon PM, Rochwerg B, Shapiro NI, Yealy DM, Seely AJE et al (2018) Sepsis-3 septic shock criteria and associated mortality among infected hospitalized patients assessed by a rapid response team. Chest 154:309–316. https://doi.org/10.1016/j.chest.2018.05.004
3. Cohen J, Vincent J-L, Adhikari NKJ, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E (2006) Sepsis: a roadmap for future research. Lancet Infect Dis 15(5):581614
4. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377
5. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA (2018) The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 24(11):1716–1720
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing sepsis treatment strategies via a reinforcement learning model;Biomedical Engineering Letters;2024-01-04
2. Does Reinforcement Learning Improve Outcomes for Critically Ill Patients? A Systematic Review and Level-of-Readiness Assessment;Critical Care Medicine;2023-11-08
3. Temporal-difference emphasis learning with regularized correction for off-policy evaluation and control;Applied Intelligence;2023-04-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3