A Natural Language Processing Approach to Automated Highlighting of New Information in Clinical Notes

Author:

Su Yu-Hsiang,Chao Ching-Ping,Hung Ling-Chien,Sung Sheng-FengORCID,Lee Pei-Ju

Abstract

Electronic medical records (EMRs) have been used extensively in most medical institutions for more than a decade in Taiwan. However, information overload associated with rapid accumulation of large amounts of clinical narratives has threatened the effective use of EMRs. This situation is further worsened by the use of “copying and pasting”, leading to lots of redundant information in clinical notes. This study aimed to apply natural language processing techniques to address this problem. New information in longitudinal clinical notes was identified based on a bigram language model. The accuracy of automated identification of new information was evaluated using expert annotations as the reference standard. A two-stage cross-over user experiment was conducted to evaluate the impact of highlighting of new information on task demands, task performance, and perceived workload. The automated method identified new information with an F1 score of 0.833. The user experiment found a significant decrease in perceived workload associated with a significantly higher task performance. In conclusion, automated identification of new information in clinical notes is feasible and practical. Highlighting of new information enables healthcare professionals to grasp key information from clinical notes with less perceived workload.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3