Validation of a Natural Language Processing Algorithm for the Extraction of the Sleep Parameters from the Polysomnography Reports

Author:

Rahman Mahbubur,Nowakowski SaraORCID,Agrawal RitwickORCID,Naik Aanand,Sharafkhaneh Amir,Razjouyan JavadORCID

Abstract

Background: There is a need to better understand the association between sleep and chronic diseases. In this study we developed a natural language processing (NLP) algorithm to mine polysomnography (PSG) free-text notes from electronic medical records (EMR) and evaluated the performance. Methods: Using the Veterans Health Administration EMR, we identified 46,093 PSG studies using CPT code 95,810 from 1 October 2000–30 September 2019. We randomly selected 200 notes to compare the accuracy of the NLP algorithm in mining sleep parameters including total sleep time (TST), sleep efficiency (SE) and sleep onset latency (SOL), wake after sleep onset (WASO), and apnea-hypopnea index (AHI) compared to visual inspection by raters masked to the NLP output. Results: The NLP performance on the training phase was >0.90 for precision, recall, and F-1 score for TST, SOL, SE, WASO, and AHI. The NLP performance on the test phase was >0.90 for precision, recall, and F-1 score for TST, SOL, SE, WASO, and AHI. Conclusions: This study showed that NLP is an accurate technique to extract sleep parameters from PSG reports in the EMR. Thus, NLP can serve as an effective tool in large health care systems to evaluate and improve patient care.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference33 articles.

1. Sleep Study;Gerstenslager,2021

2. Polysomnography (Sleep Study) https://www.mayoclinic.org/tests-procedures/polysomnography/about/pac-20394877

3. How to interpret the results of a sleep study

4. Application of computational intelligence models in IoMT big data for heart disease diagnosis in personalized health care;Bajeh,2021

5. A hybrid solution for extracting structured medical information from unstructured data in medical records via a double-reading/entry system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3