Abstract
Background: There is a need to better understand the association between sleep and chronic diseases. In this study we developed a natural language processing (NLP) algorithm to mine polysomnography (PSG) free-text notes from electronic medical records (EMR) and evaluated the performance. Methods: Using the Veterans Health Administration EMR, we identified 46,093 PSG studies using CPT code 95,810 from 1 October 2000–30 September 2019. We randomly selected 200 notes to compare the accuracy of the NLP algorithm in mining sleep parameters including total sleep time (TST), sleep efficiency (SE) and sleep onset latency (SOL), wake after sleep onset (WASO), and apnea-hypopnea index (AHI) compared to visual inspection by raters masked to the NLP output. Results: The NLP performance on the training phase was >0.90 for precision, recall, and F-1 score for TST, SOL, SE, WASO, and AHI. The NLP performance on the test phase was >0.90 for precision, recall, and F-1 score for TST, SOL, SE, WASO, and AHI. Conclusions: This study showed that NLP is an accurate technique to extract sleep parameters from PSG reports in the EMR. Thus, NLP can serve as an effective tool in large health care systems to evaluate and improve patient care.
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management
Reference33 articles.
1. Sleep Study;Gerstenslager,2021
2. Polysomnography (Sleep Study)
https://www.mayoclinic.org/tests-procedures/polysomnography/about/pac-20394877
3. How to interpret the results of a sleep study
4. Application of computational intelligence models in IoMT big data for heart disease diagnosis in personalized health care;Bajeh,2021
5. A hybrid solution for extracting structured medical information from unstructured data in medical records via a double-reading/entry system
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献