DEM Analysis of Track Ballast for Track Ballast–Wheel Interaction Simulation

Author:

Lim Nam-HyoungORCID,Kim Kyoung-Ju,Bae Hyun-UngORCID,Kim SeungjunORCID

Abstract

This study aims to suggest a rational analysis method for a track ballast–wheel interaction that could be further developed to model the interaction in a train-derailment event, based on the discrete-element method (DEM). Track ballast is filled with gravel to form the trackbed. Although finite-element analysis (FEA) is widely applied in structural analysis, track ballast cannot be analyzed using conventional FEA because this approach does not allow separation of elements that share nodes. The DEM has been developed to analyze the dynamic behavior of separable objects, assuming that the objects are rigid. Therefore, track ballast can be modeled as separable rigid pieces of gravel, and its dynamic behavior can be analyzed using a rational contact model. In this study, a rational numerical strategy for track ballast–wheel interaction was investigated using the DEM approach. The suggested analysis method was validated through comparison with the experimental results of a drop test. In addition, case studies were conducted to investigate the effects of the contact-model parameters on the simulation result.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3