Behaviour of ballast stabilised with recycled rubber mat under impact loading

Author:

Ngo Trung1ORCID,INDRARATNA BUDDHIMA2,COOP MATTHEW3,QI YUJIE1ORCID

Affiliation:

1. Transport Research Centre, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Australia.

2. Transport Research Centre, University of Technology Sydney, Ultimo, Australia; ARC Industrial Transformation Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail).

3. Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering Science, University College London, UK.

Abstract

During the passage of trains, dynamic impact loads caused by wheel imperfections or rail abnormalities cause significant ballast degradation. In this study, the use of rubber mats manufactured from recycled tyres placed underneath a ballast layer is investigated to mitigate the adverse effects of impact loads. Based on a series of tests conducted using a high-capacity drop-weight facility to evaluate the dynamic impact responses, the experimental results show that the inclusion of a rubber mat beneath the ballast assembly significantly reduces particle breakage. This study also describes a numerical analysis following a coupled discrete–continuum modelling approach to examine the complex interaction of discrete ballast grains with the recycled rubber mat. In particular, a mathematical framework coupling the discrete and continuum domains is developed to facilitate the exchange of forces and displacements at the ballast–mat interface. Laboratory data measured from large-scale impact tests are used to calibrate and validate this coupled model. Subsequently, the model is used to predict the deformation and breakage of ballast, contact force distributions, impact forces, coordination numbers and the evolution of energy components during impact testing. The energy-absorbing properties of the rubber mat are captured in terms of reducing particle breakage from a micromechanical perspective.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3